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COMPARTISON OF TWO- AND THREE-DIMENSIONAL POTENTIAL-FLOW
SOLUTIONS IN A ROTATING IMPELLER PASSAGE

By Gaylord O. Ellis and John D. Stanitz

SUMMARY

A solution is presented for three-dimensional, incompressible, non-
viscous, potential flow in a rotating impeller passage with zero through
flow. The solution is obtained for a conventional impeller with
straight blades but with the inducer vanes removed and the lmpeller
blades extended upstream parallel to the axis of the impeller. By super
posltion of solutions two additional examples are obtalined for different
ratios of compressor flow rate to impeller tip speed. The three-
dimensional solutions are compared with corresponding two-dimensionsl
solutions and it is concluded that, at least for the type of impeller
geometry investigated, two-dimenslonal solutions can be combined to
describe the three-dimensional flow in roteting impellers with suffl-
cient accuracy for engineering analyses.

INTRODUCTION

As an gid to better understanding of flow conditions in rotating
impeller passages, methods of analysis have been developed in the past
for potential nonviscous flow. In order to achieve solutions with a
reasonable expenditure of effort, all methods are based on two-
dimensional assumptions, in that the flow is restricted, by assumption,
to specified flow surfaces in space. Either of two types of surface
are usually assumed for the flow: first, the mean blade (or passage)
surface on which flow conditions vary from hub to shroud but ere con-
sidered constant in the circumferentisl direction (axial-symmetry solu-
tions, references 1 and 2), or, second, surfaces of revolution on which
flow conditions very from one blede to. the next, but normal to which
the flow conditions are considered constant (blade-to-blade solutions,
references 3 and 4).

If the streamlines of an axial symmetry solution are used to
generate surfaces of revolution around the sxis of the impeller, the
totality of the blade-to-blade solutions on these surfaces of revolution



2 NACA TN 2806

constitute a quasi-three-dimensional solution (reference 5) because the
solutions indicate varistions in flow conditions throughout the impeller
passage. However, because the flow is constrained to surfaces of revo-
lution, the solution is not three dimensional In the exact sense of the
word. No complete three-dimensional solutions for roteting impeller
passages exist in the literature, and a solution has therefore been
obtalned at the NACA Lewils laboratory. The solution is presented in
this report and is compared with the results of axiasl-symmetry and

blade-to-blade solutions in order to evaluate these two-dimenslonal oy
methods of analysis. ‘55
The three-dimensional solution was obtained for incompressible non-
viscous flow in a rotating impeller passage with stralght blades end
with the Inducer vanes located far upstream of the impeller. By super~
position of solutions, resulte are obtalned for several ratios of flow
rate to impeller tip speed. :
~

GENERAIL. METHOD OF ANALYSIS

A partisl differentisl equaition for three-dimensional flow in a
rotating impeller passage is developed from considerations of continuity
and gbsolute irrotational fluld motion.

Assumptions. - The fluld 1s assumed to be inviscid and incompres-
sible. The flow 1s assumed to be steady relative to the rotating
impeller passage, and in the absence of viscosity the absolute motion
of the fluld is assumed to be 1rrotational. It is assumed that the
phenomenon being investigated, thet is, the deviation of three-
dimensional flow from the restricted motion of two-dimensional solu-
tions, 1is qualitstively the same for compressible and incompressible
solutions. This deviatlion is a perturbation resulting primaerily from
rotation of the impeller; and in reference 6 it is shown that at least
for two-dimensional solutions this type of perturbation i1s independent
of compressibility, which affects only the average velocity.

Cylindrical coordinate system and velocity components. - The cylin-
drical coordinates R, 6, and Z relative to the impeller are shown in.
figure 1(a). (All symbols are defined in appendix A.) These coordi-
netes are dimensionless, the linear coordinates R and Z having been
divided by the impeller tip radius (so that R 1s equal to 1.0 at the
impeller tip).

The absolute velocity @Q has components QR, @Qg, and Qy in the

R, 6, and 'Z directions, respectively (fig. 1(a)). These velocities
are dimensionless, having been divided by the impeller tip speed (so
that, for example, the dimensionless blade speed at any radius R is .
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equal to R). If W 1s the velocity of the fluld relative to the Impeller,
expressed as a ratio of the impeller tip speed, then

Wg =Qg - R _ (1)

Potential function ®. - For ebsolute irrotational fluid motion

VXQ = 0 (2)

where the bar indicates a vector quantity. A potential function o
satisfies equation (2) identically if defined by

Q= Ve (3)
from which
o (38)
222 q (3b)
and
9P qz . (3c)

oZ

Differential equation of flow. - From continuity

vV.Q =0
so that, from equation (3),
V=0 (4a)

which in cylindricel coordinates becomes
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NUMERICAT. PROCEDURE

A numerical procedure .is outlined for the solution of the partisl
differentisl equation. (4) for flow in a rotating impeller passage with
special type of geometry.
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Preliminary Considerations

Special type of impeller geometry. - The three-dimensional solutions
presented are for a straight-bladed impeller of conventional design
except that the inducer vanes are removed and the straight impeller
blades are extended Indefinitely upstream parallel to the axis of the
compressor. Thils 1dealized entrance condition along with straight
blades results in substantial simplification of the numerical procedure.

Superposition of solutions. - As a result of the special type of
impeligi geometry Just discussed, the boundery conditions for flow
through a rotating lmpeller are equal to the sum of the boundary condi-
tions for zero flow through the rotating impeller sfid for finite flow
through the stationary impeller. Therefore, because the boundary con-
ditions can be added and because the differential equation (4) is
linear, the velocity potential ¢ for flow through the rotating impeller
passage can be expressed as _ - o L :

® =@ +kp (5)

where @1 satisfies equation (4) and the boundary conditions for the
rotating impeller with zero net through flow and @R satisfles the same

equation but for the boundary conditions asgssociated with flow through
the stationery impeller. The solution for ¢; is called the "eddy-flow

solution" and corresponds to ideal flow conditions in the rotating
impeller with the throttle closed so that no through flow occurs. The
solution for @, 1is called the "through-flow solution" and, for the

special type of impeller geometry belng considered, this solutlon i1s
axially symmetric and corresponds to flow with zero whirl thkrough an
annulus wlth the same hub-shroud profile and no impeller blades. Solu-
tions for varilous ratlos of flow rate to impeller tip speed are obtained
directly for various values of k in equation (5).

Eddy-Flow Solution

The eddy-flow sclution for the rotating impeller passage with zero
net through flow is consildered first.

Transformation of coordinates. - It is convenient for purposes of
the numerical solution by relaxstion methods to transform the RZ-plane
to one on which the coordinates are-the streamlines 1 and. velocity
potential lines ¢ for flow through the compressor annulus without
blades. Because the hub and shroud contours are streamlines in the
RZ-plane, these contours become straight parallel lines in the
¢n-plene. In terms of the new transformed coordinates, equation (4b)
for the eddy-flow potential ¢, becomes (aeppendix B)

L]

2587
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1 achl oy

Q" agz * RZQZZ 7552 * 2%l =0 (6)

where the subscript 2 refers to the solution for axlally symmetric
flow through the compressor annulus with no bledes or; which is the
same thing, through the stationary impeller passage of the special type
considered in this report.

The new coordinate system introduces two additional velocity compo-
nents (appendix B)

and
Qn = R g—-;p (7o)
and an angle ap defined by
wen e - (2), ®

all of which asre shown in figure 1(b). From this figure it is seen
that

QE = Qg, cos ap + Qg sin ap (9a)
and

Q = Qg cos up -.Qz sin ag (9p)
or, conversely,

Qg = Qg sin ap + Qy cos ap (10a)
and

Qz = Qg cos ap - Qq sin ap (10b)

Boundary conditions. - For the eddy-flow solution of equation (6)
the boundary conditions that must be satisfied for the special type of
impeller geometry considered in this report are: .
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(1) The flow direction must be tangent to the hub and shroud in the
impeller and giffuser so that Qm is zero, or, from equation (),

é;f =0 (11)

(2) Along the blade the relative flow is tangent to the blade sur-
face so that for straight radial blades the relative tangential velocity
Wg 1s zero and from eguations (1) and (3b)

3 - %

(3) Boundaries are established in the diffuser on meridional plsnes
extending from the blade tips. For a rotating impeller with no through
flow the radial velocity component is zero on these boundaries so that
the potentisl function 1s constant along radiel lines on these surfaces.
Variations in velocity potential ¢ with Z at the lmpeller tip of
constant radius indicete the presence of & vortex sheet shedding from the
trailing edge of the blade and passing downstream. It is assumed that
the strength of this sheet is weak and can be ignored in the solutlon of
equation (6). For impeller blades with constant tip radius the variation
in work input from hub to shroud at the impeller tip is negligible and
the assumption therefore appears to be reasongble., The Joukowskl condi-
tion at the blade tip is automatically satisfied by condition (2).

(4) The domain of the solutions is extended in the upstream and
downstreem directions until flow conditions eare uniform in a plane normal
to the direction of through flow. For the eddy-flow solution thils con-
dition is achieved when (Ql)e is zero, that i1s, when O®/0f 1is zero,

everywhere on a plane normel to the £ coordinate.

(5) The ideslized inlet of the special impeller geometry comsidered
in this report results in symmetry of flow sbout the mean plane between
blades in the rotating impeller with no through flow. The flow is
directed normal to this plane and @ 1s therefore everywhere constant

(zero) on it.

Relaxation solution. - The differential equation (6) is solved by
relaxation methods (reference 7) to satisfy the boundary conditions just
described. The veloclty components are then determined by equations (3)
and (7) in finite difference form. For the numerical examples of this
report, a three-point system was used for expressing the differential
equations in finite difference form.

2587
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Flow paths. - Any three velocity components determine the flow direc-
tion at & point so that flow paths relative to the Impeller passage can
be determined from the velocity components Qg, Wy, and Qg, or Q’i’ Vo>

and . On the hub, shroud, and blade surfaces the path lines can be

constructed graphically from lines of constant flow direction on these
surfaces.

Accuracy. - For the mmerical examples of this report, the impeller
channel includes a total of 5400 grid points at which the velocity poten-
tial was relaxed to a unit change in the £ifth decimal. (Because P

is constant on the mean plane and the flow 1s symmetrical gbout this
plane, the number of grid points st which it was necessary to relax is
reduced to 2400.)

In order to check the accuracy of the graphical construction of the
path lines, these lines were obtained on a plane normal to the through-
flow direction far upstresm of the impeller where a direct two-dimensional
solution for the stresm function is known and valid. Figure 2(a) compares
the path lines with the streamlines. It 1s noted that the graphically
constructed path llnes agree well with the streamlines. It should be
pointed out, however, that the path-line spacing is not sufficiently
accurate to be indicative of the veloeity distribution. In figure 2(b)
the velocities obtained from the three-dimensional solution for the
velocity potential are compared with the velocities obtained from the
two-dimensional solution for the stream function. The comparison indi-
cates much better agreement in the velocity distributions than was indi-
cated by the path-line spacing in figure 2(a).

A check on the accuracy of the three-dimensionzal solution will be
given in connection with a discussion of the numerical exasmples. Thils
check indicates approximately the same accuracy that is shown by the
comparison of velocities in figure 2(b).

Combined Solutlons

After the eddy-flow solution has been obtained, various percentages
of a through-flow solubtion may be added to obtain solutions for different
ratios of compressor flow rate to Impeller tip speed.

Through-flow solution. - The through-flow solution is obtained by
methods outlined in reference 1, for examplé. As already discussed, the
velocity potentials for the two types of solution can be added or, as
indicated by partial derivatives of ¢ in equation (5), the velocity
components themselves can be added directly. The latter procedure avoids
the necesgity of computing the distribution of ®, from the distribution

of stream functlon determined by reference 1.
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Flow path. - The procedure for graphlcally determining the flow path
for the combined solutions is id.entlca.l with that orutlined for the ed.dy-
flow solution.

NUMERICAL EXAMPLES

X
Three-dimensionsl solutions for flow through an impeller with S}
straight bledes end with the Inducer vanes located far upstream of the :
impeller are presented for: (1) zero flow through the rotating impeller
passage, (2) flow through the stationary impeller passage, and (3) com-
binations of (1) and (2) for various ratios of through flow to impeJ_'Ler
tip speed. . . _

Impeller Geometry

The impeller gecmetry for the numericasl examples is the same as
that in references 1 and 4 with the inducer vanes located far upstream
of the impeller. The hub-shroud profile of the impeller is described x
in figure 3. The blade spacing is 32.80° as in reference 4.

The results of the solutions are presented on the channel surfaces
and on the nine meridionsl planes indicated in figure 4(a). The £,
coordinates on the meridional planes are shown in figure 4(b). The lines
of constant g are spaced at intervals corresponding to equal increments
of the § coordinate-used in reference 4.

Solution for Zero Net Flow Through Rotating Impeller Passage

Velocity potential ;. - Lines of constant velocity potential on

the meridional planes are shown In figure 5.  The center plene E (see
fig. 4(a)) is not shown because, as discussed previously, ®; is zero

everywvhere on this plsne. Note theat lines of constant Cpl Intersect the

hub-shroud profile at right angles, as required by equation (11). The
meridional velocity component must be directed normael to the lines of
constant @7 in the meridional planes and has magnitudes inversely pro-

portional to the line spacings.

Velocity components. - Veloclty components of the eddy-flow solution
are shown in figures 6 to 8. These veloclity components are directly
related by equation (3) to the local partisl.derivatives of the velocity
potential CPl given in figure 5. For the impeller geometry being inves- -

tigated, all these eddy-flow veloclty components would be neglected by
axlal-symmetry-type solutions (reference 1). -
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Lines of constant (Ql)g on the meridional plenes are shown in

figure 6. This velocility component of the eddy-flow solutlon is tangent
to the streamlines {constant 1), and therefore to the velocities, of the
axiglly symmetric flow through the stationary impeller. The veloclty
component (Q;)s has maximm values on the blade surfaces (planes A

end A') and is gero on the center plane E. This velocity component

also becomes zero upstream and downstream of the impeller proper.

Lines of constant velocity component (Ql)n are shown on the

meridional planes In figure 7. This velocity component of the eddy-flow
solution is normal to the streamlines, and therefore to the velocities,
of the flow through the stationery impeller. The velocity component
(Ql)n has maximmm values on the blade surfaces and is zero on the center

plane E. This velocity component must also be zero along the hub and
shroud boundaries, and becomes zero downstream of the impeller. Note
that the velocity component (Ql)n would be completely neglected in two-

dimensional solutions on surfaces of revolution (reference 4) generated
by streamlines of axlal-symmetry-type solutions.

Lines of constant tangential velocity component (Wl)e relative to

the impeller are shown in figure 8. For the impeller geometry investiga-
ted, this velocity component has maximum values on the center plane E
and is zero on the blade surfaces. Negative values of (Wi)g indicate

flow across the meridional planes in the direction opposed to impelier
rotation (into the page), and positive values of (Wji)g indicate flow

across the meridionasl plenes in the direction of rotation (out of the
page). From continuity considerations the integrated weight flow into the
pege (exclusive of the fluid that remasins in the diffuser) must equal the
integrated welght flow out of the page. These integrations have been
carried out for the center plane E 2and welght flows agree within

2%-percent. This agreement indicates approximately the same accuracy as

that obtained from the integrated welght flowe across the center line in
figure 2(b). Thus it seems reasonable to conclude that the error through-
out the domain of the three-dimensionzal solution is not greater than that
indicated by the velocities in figure 2(b).

Path lines. - Path lines of f£luid particles on the passage surfaces
are shown for the eddy-flow.solution in figure 9. The fluild remains in
the Impeller passage and rotates in the opposite direction to that of the
impeller.

Solution for Flow Through Stationary Impeller Passage
Flow through a stationary impeller with stralght blades has zero

tangential velocity and is equivalent to flow through the amnulus formed
by the hub and shroud surfaces., In reference 1, 1t is shown that for
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incompressible flow the distributions of stream function and velocity
components in -the meridional plene for flow through an annulus are the
same &as the distributions for axlally symmetric flow through a rotating
impeller with an infinite number of straight impeller blades. Therefore,
example II of reference 1 is used in this report as the solution for flow -
through the stationary impeller passage. ' ) -

Streamlines. - Streamlines for flow through the stationary impeller
passage are shown in figure 10. These lines are also the 17 coordinates
(fig. 4(b)) used in the relaxation solution for the eddy flow.

L8s2

Velocity distribution. - For flow through the statiomary impeller
passage, (Qplg, (Walg, and (Qz)n are zero. Lines of constant velocity

(Qz)g (equal to Qp) are shown on a meridional plane in figure 11. As

for the eddy-flow solution, this velocity is expressed as a ratio of the
tip speed of the rotating impeller, and the solution presented was A
obtained for (Qz)g equal to 0.3429 far upstream of the impeller proper.

The distribution of (Qg)g is the same for all meridional planes.

Flow direction. = Lines of constant flow direction oz are shown on

a meridional plene in figure 12. These values of oap can be used to com-
pute the velocity components Qr and Qy by equation (10).

Solutions for Flow Through Rotating Impeller Passage

Solutions for various ratios of flow rate to impeller tip speed are
obtained by superposition of various percentages (k in equation (5)) of
the through-flow solution on the eddy-flow solution. Either the veloc-
ity potentlial or the velocity components may be superposed. Two solu-~
tions are presented for flow through the rotating impeller with values
of the axial inlet velocity Qg (equal to——(Qz)g) upstream of the

impeller equal to 0.1372 and O.3429, that is, for k equal to 0.4 and
1.0, respectively.

Solutlon for k = 0.4, - Path lines of fluid particles on the sur-
faces of the impeller channel are shown in figure 13 for 40 percent of
the through-flow solutlon superposed on the eddy-flow solutlon. Path
lines on the hub and on the blade surface faced in the direction of rota-
tion are shown in figure 13(a); path lines on the shroud and on the blade
surface opposed to the direction of rotation are shown in figure 13(b).

A composite plot of these path lines is shown in figure 13(c).

For this solutlon the flow rate through the rotating impeller is not
sufficient to eliminate (by superposition) all the reverse flow result-
ing from the negative velocitles (Ql) of the eddy-flow solution (see .

fig. 7(a)). This condition corresponds to the eddy flow that is attached
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to the face of the blade in the direction of rotation for two-dimensional
solutions on surfaces of revolution (references 4 and 6, for example).
Unlike the two~-dimensional solutions, however, the fiuid in the reverse
flow of the three-dimensionel solution does not remain in the impeller
but eventually leaves as Indicated by the spiral path iines emanating
from the stagnation point on the hub of the impeller.

The locus of stagnation points indicated on the blade surface in
figure 13(a) corresponds to the downstream stagnation point associated
with the eddy flow of a two-dimensional solution. For the three-
dimensional solution in figure 13(a),- upstream stagnation points occur
at the hub and shroud only. However, along the dot-dash line between
these stagnation points the velocity component @ is zero so that this

line corresponds to the upstream stagnation point associated with the
eddy flow of a two-dimensional solution. Path lines on the shroud sur-
face in figure 13(b) converge to the upstream stegnation point. This
convergence indicates that, as the path lines approech the stagnation
point, the fluid leaves the shroud surface and passes into the interior
of the passage.

Solutlon for k = 1.0. - Path lines of fluid particles on the sur-
faces of the impeller channel are shown in figure 14 for 100 percent of
the through-flow solution superposed on the eddy-flow solution. The
conditions for this solution are the same as those for the two-dimensional
solutions given in references 1 and 4. Peth lines on the hub and on the
blade surface faced in the direction of rotation are shown in figure 14(a);
path lines on the shroud and on the blade surface opposed to the direction
of rotation are shown in figure 14(b). A composite plot of these path
lines is shown in figure 14(c).

COMPARTSON OF TWO- AND THREE-DIMENSIONAL SOLUTIONS

The results of the three-dimensional solution are compared with two-
dimensional solutions on the mean passage surface extending from hub to
shroud, on the mean surface of revolution, and on the shroud surface.
Only the eddy-flow solutions are compared because the contribution of
through flow to the velocity components is the same for both the two-
aend three-dimensional solutions. Thus the velocity components to be
compared are components of the perturbation velocity caused by the rota-
tion of the impeller, and the rélative importance of errors in these
components is reduced when the known, primary through flow i§ added.

Mean passage surface. - Because, for the type of impeller geometry
investigated, the three-dlmensional eddy flow has no velocity components
in the mean passage surface extending from hub to shroud (plene E,
fig. 4(a)), the velocity components in this plane are solely determined
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by, and therefore agree with, the axisl-symmetry two-dimensionsl solu-
tion. The axial-symmetry solutlion, however, completely neglects the
relative tangential velocity Wp, which for the three-dimensional solu-

tion has maximum velues on the mean plane (fig. 8(d)).

For impellers with curved blades, the relative tangential velocity
component reaches maximum values on a mean flow surface between the
blades. If, as for high-solidity blade rows, this surface is not much
different from the geometric mean surface between blades, then the £low
is nearly two dimensional on the mean passage surface and the flow on
this mean surface is approximately described by axlal-symmetry solutions
like those of reference 1. This conclusion is reached by Ruden in
reference 8,

Mean surface of revolution. - The velocity components Qg and Wy

for the two- and three-dimensional solutions are compared on the mean
surfece of revolution in figures 15 and 16. The agreement Ffor Q; in

figures 15(a) end 15(b) is excellent, and the agreement for Wy in fig-

ures 16(a) and 16(b) is also excellent near the impeller tip, although
the two-dimensional solution (fig. 16(b)) introduces relastively small
positive values of Wg not found for the three-dimensional solution in

the region upstream of the contour line for Wg equal to zero.

The slip factor, defined as the ratio of average absolute tangential
velocity at the Impeller tip to the tip speed of the impeller, depends on
the distribution of Wg at the impeller tip and is equal to 0.7892 for
the three-dimensionael solution compared with 0.8142 for the two-
dimensional solution on the mean surface of revolution (reference 4).

The velocity component Qq of the three-dimensional solution is
plotted 1n figure .17. Thils veloclty component 1s normal to the mean sur-
face of revolution eand is completely neglected by the two-dimensional
solution. '

Shroud. - The veloclty components Q§ and Wg for the two- and

three~-dimensional solutions are compared on the shroud surface in fig-
ures 18 and 19. (The two-dimensional solution on the shroud surface was
obtained from correlstion equations, developed 1n reference 4, using, for
"standard values" of velocity, the velocities of the two-dimensionsal,
eddy-flow solution on the mean plane.) The sgreement for Qg in fig-

ures 18(a) and 18(b) is good, but the agreement for .Wg 1n figures 19(a)

and 19(v) 1s poor, except in & limited region near the jmpeller tip.
From simple physical conslderations the agreement for QE and Wp on
the hub is expected to be similar to the agreement on the shroud, except
that Wg will have large positive values instead of the large negative
values on the shroud. On the hub and shroud surfaces the velocity com-
ponent Qﬂ is zero for both the two- and three-dimensicnal solutions.

L8s2
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Summary of comparisons. - A summary of the comparisons between the
two- and three-dimensionasl solutions that are discussed in this report
is glven in the following table:

Velocity Agreement
component
Mesn passage | Mean surface | Hub or shroud
surface of revolution | surface
Q’E good good good.
Wg poor good poor
O'fl good. poor good

It is concluded that on the flow surfaces investigated the veloclty com-
ponents Q’§ » Wg, and Q,q agree for the two- and three~dimensional solu-

tions discussed in this report, except: (1) Wg on the hub, shroud, and
mean passage surface, and (2) Q'Tl on the mean surface of revolution.

If quasl-three-~dimensional solutions are obtained by the proper
cormbination of two-dimensional axial-symmetry and blade-to-blade solu-~
tione (reference 5), good agreement with the exact three-dimensional
solution is indicated by good agreement on all surfaces of revolution.
This agreement has already been {iscuesed for the hub, shroud, and mean
surfaces of revolution. For intermediste surfaces the table of comparl-
sons suggests that the agreement will always be good for Q’i’ will be

progressively better for Wg as the mean surface of revolution is
approached, and will be progressively better for Qn as the hub and.
shroud are approached. Because g is the wvelocity component of prime

importance, it is concluded that, at least for the type of impellexr
investigated in this report, two-dimensional solutions can be combined
to describe the three~dimensional flow in rotating impeller passages with
sufficient accuracy for engineering enslyses.

SUMMARY OF RESULTS AND CONCLUSIONS

A solution is presented for three-dimensional, incompressible, non-
viscous, potential flow in a rotating impeller passage with zero through
flow. The solution 1s obtained for a conventional impeller with straight
Pblades but with the Inducer vanes removed and the impeller blades
extended upstream parallel to the axis of the impeller. By superposition
of solutions twd additional examples are obtalned for different flow
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rates through the rotating impeller. Of particulsr interest is the fact
that at low compressor flow rates the fluid in the reverse or eddy-flow
region does not remain permanently in the Impeller ‘passage, as is the
case for two-dimensional solutions on surfaces of revolution, but, after
spiraling arocund, eventually leaves the lmpeller. In other respects the
three~dimensional solutions are compared with corresponding two-
dimensional solutions and it is concluded that, at-least for the type

of Impeller gemmetry Investigated, two-dimensionsal solutions can be
comblned to describe the three-dimensional flow in rotating impellers
with sufficient accuracy for engineering snalyses. In particular it is
concluded that:

1. On the mean surface of revolution the velocity components,
except the component normal to the surface, agree for the two~ and
three-dlmensional solutions.

2. On the hub and shroud surfaces the relatlve tangential velocity
component does not agree for two- and three-dimensional solutions, but—
the other wveloclty components do.

Lewils Flight Propulsion Laboratory
Netlional Advisory Committee for Aeronautics
Cleveland, Ohio, July 3, 1852
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APPENDIX A

SIMBOLS

The following symbols are used in this report:

A,A',B,B,...

k

Q

R,0,%

£:n

P
Subscripts:

1

R,G,Z,i:ﬂ

meridional planes (fig. 4(a))
percentage of through-flow solutlion ®s

ebsolute velocity, expressed as ratio of impelier tip
speed

cylindrical coordinates (fig. 1(a)), linear coordinates
expressed as ratios of impeller tip radius

relgtive velocity, expressed as ratio of impeller tip
speed

angle, figure 1(b) and equation (8)

velocity potential and stream function, respectively, for
incompressible f£low through hub-shroud annulus; used as
coordinate system in £1n-plane, equations (Bl) and (B2)

velocity potentisl, equation (3)

rotating impeller with zero net through flow (eddy-flow
solution)

stationary impeller with through flow (for numerical
example, through flow is such that Qg equals 0.3429

upatream of impeller)

components in R,0,Z,§,n directions, respectively
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APPENDIX B

TRANSFORMATION FROM RZ~ TO ¢1n-PLANE

NACA TN 2806

It is convenlent for purposes of soclution by relaxation methods to
transform the RZ-plane to one on which the coordinates are the stream
funetion 1 and the velocity potential ¢ for flow through the com-
Pressor ammulus without blades. The stream function 1

continuity condition 1f defined as

g% = R(Qz)g
g% = - R(Qz)R

satisfles the

(B1)

and the velocity potential ¢ satisfies the irrotationality condition

if defined as

%% = (Q2)r
3 - (e,

(B2)

In terms of the transformed §,n coordinates, the partial deriva-

tives of equation (4b) become
o) op d oY 9
-5ty
%p % (3
‘Eg % (53) + 2 52%%‘3%
RN
¢ 3r? " aR

Q/
0/

=10

\

52¢) d 2
+s;5(s%) +

(B3)

1892
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From equations (Bl) through (B3), equation (4b) becomes
2 L 1_29(6%%6%)3
+ = + = + +
(%" QZ)(agz an) RE 302 \9R = R S-Z_zagé
o0Q,; 9Q
R 0
[Z(Qz)z + R(SR_ - E)Z ﬁ =0 (B4)
But,
(ag? + Qz2)p =
end from continuity
Qg QR 99
SR *tR +3Z J2 =09
and for irrotaetional flow
(= - =)
R -~ &% /2=
so that equation (B4) becomes
2 3% o 2 3% 1 d%p d
Qo2 -—-—+RQ, + = —= + 2(Q2) =0 (8)
YT a2 = B2 202 272 5 .
Equation (6) is the partial differential equation for the distribution
of ® in the §,1,0 coordinate system.
This new coordinate system introduces two new velocity components
Qg and Q, , which are related to the radial and axlal wvelocity com-
ponents 'by equation (9). Combining equations (3), (9), and (Bl) to
(B3) glves
0P
Qg = Qg 5—§ (7a)
P
Q-n = RQ,Z 5?]' (Tb)
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2587

/ impeller

/ irection of

-~ rotation
/

(a) Cylindrical coordinates.

Figure 1. - Coordinate systems relative to impeller, and absolute veloclty
components. All quantities are dimensionless. ILinear coordinates are
measured in units of lnpellier tlp redius; velocity components are
measured in units of lmpeller tip speed.



20 NACA TN 2806

Z

(b) ¢,1 coordinate system in RZ-plane.

Figure 1, - Concluded. Coordinate systems relative to impeller, and absolute
velocity components. All quantities are dimensionless. Linear coordinates
ere measured in units of impeller tilp redius; velocity components are
measured in units of impeller tip speed.

2587
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Direction of rotation

DStagnation
point

Streamlines
~— ——— Path lines

(a) Comparison of graphically constructed path lines (three-dimensional solution) with streamlines

obtained from stream function of two-dimensional solution.

Figure 2. - Comparlson of results obtained from two- and three-dimensional solutions. Plane normal
to impeller axis in region of uniform axiel veloclty far upstreem. '
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Direction of rotetion

' 0.18mmr===r — =
—
===-_! ___;__—_-,-)/
.18 =
oy :
.

-

L8852

Solution

——— Two dimensional
— — —— Three dimensional

(b) Lines of constant velocity relative to rotating impeller.

Figure 2. - Concluded. Comparison of results obtained from two- and three-dimensional solutions
Plane normal o impeller axis in region of uniform axisl veloclity far upstream.
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Radius, R

1.2

1-0 —

u8—

Vaneless diffuser

Impeller tip

61—

-4-—

\ Hub

.2_

Axis of impeller
[ ! l ! | 1

-.2

]
0 .2 4

Axigl distance, Z

.6

Figure 3. - Hub-shroud dimensions of impeller for mmerical

examples. Vaneless diffuser; straight impeller blades
extended far upstream parallel with axis of impeller.
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Pigure
ti

(a) Designation of planes.

4. - Maridional planes on which results of
hre¢-dimensional solntions &re plotted.

NACA TN 2806
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2587

{b) Transformed &,7 ocoordinates on meridional planes.

Figure 4. - Concluded. Meridicral planes on which results of thres-dimensional
solutions are plotted.

Velooity po

8treaz function 7

Impeller axis

Impaller ti
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(a) Meridional plane 4 1ler blade).
v

function are same ofnl plane A

3hpoud

Values of potential
but of oppcsite aign.

Pigure B. - Lines of ocnstant veloolty potentisl @, of eddy low.

Impeller axis

NACA TN 2806

Yelocity
Impeller tip potentin
®
%
T
1
~=500
- 800
=700
=
=~600
=500,
~300
Hub

1882
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L

Velooity
potential
*1

~780 —,—-
|

Impeller tip-

{b) Meridional plane B. Values of potential function are saze o ‘
plane B* but of opposite aign. 200

Yigure 5. - Continmed. Lines of constant velocity potential e, of eddy flow.
1

| | =400,
l_
4,_\— -
‘ .
\ \\
\ \ T
100 ——i -

Impaller axis
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Imperier tip

(o) Meridional plane C. Values of potential function &re samws on plane ¢!
but of opposite sign.
Pigure 5. - Contirmed. Lines of oonstant velooity potential @; of eddy flow.
e
Shroud . 30

100

Impeller axis

NACA TR 2808

Yeloolity
potential

b

=500

i

L1862
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(d) Meridicnal plane D. Values of potential.function are same on
plane Dt but of opposite sign.

Figure 5. - Concluded.

Shroud

~100,

Impeller axis

Lines of constant velooity potential e, of eddy flow.

Impeller tip
Velocity
potential

"
s

'~ 20—

/-m

~200.
-180
> -160,
~140,
-120
Bub
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Impeller tip-, Yelocity
, ocoaponent
%]
i
——
=.10
(a) Meridiconel plans 4 (impeller blade}. Velues of {Q))g are saxs co ]
plane A' but of cpposite sign.
Figure &. - Lines of oconstant (QI)E' veloeity component of eddy-flow solution -, 50,
tangent to velocity of through-flow sclution.
Y-
Shroud . R S

. Impeller axis e - . . . -

L8Ss2
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Veloclity

Impeller tip
(b) Heridiodel plane X. Values of (Q1}¢ are same on plane B’ but
of opposite s .
Pigure 8. - Contirmued. Lines of constant (Ql)g, velocity ocouponent of- eddy-flow
solution tangent to velooity of through-flow solution.
- b
-,28
-.28
Shroud \ .
=-.20
=-.18
NN
=.1
-.14
- -.12
-.10
.08 AN
-oe 9
- 021 \
Hub

AN

Iopeller axis
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(o) Meridional plane C. Values of (Qllq are same cu plane C' but
of opposite sign.

Pigure 6. - Continued. Lines of constant (Ql} » velooity cowponant of eddy-flow
solution tengent to velocity of through-flow solutiocn.

Shroud -

1852
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Veloci!

aomponent
b~ (QI)[
[+2] Ly
7o -0.02
N

Impeller ti,
=-.0
{d) Meridicnal plane D. Values of (Ql)g are sams on plane D' ut
of opposite sign.
Pigure §. - Concluded. Lines of constant (Ql)e' veloeity companent of eddy-flow -
- solution tangent to velocity of through-flow solution.
=-.08
~.,
Shroud
~.
-.08
-.04
-.02
. Hab
.
“NACA .~

lapeller axis
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{a) Keridional plane A (impeller blade). Values of (Ql)n are
sare on plane A' but of opposite aign.

Pigure 7. - Lines of ccnstant (Q,l)n, velocity component of eddy-flow solutiom
noroal to veloclty _of through-flow solution and lying in meridional plane.

Shroud

Impel L-_r mxis

NACA ™ 2806

Impeller tip—

Yelocity
component.

()
=0.02

-.08
-.08
=10

=12
- 14

L8s2
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Impeller tlp-\

(b) Keridional plane B. Values of (Q;)y are ssme on plane B' but
of oppcsite sign.

Figure 7. - Contimued. Lines of constant (Ql)n' veloclty component of eddy-flow
sclution norzal to veloclity of through-flow solution and lying in meridionel
plare. -
Yelocity
component
)y
. ¥, !
-£.02

Shroud

1

~.14

irpeller axis .
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Impeller tip-

{c) Meridiopal plane C. Values of (Gﬂn are same on plane (! but
of opposite sign.

Figure 7. - Continued. Lines of constant (Qljn, veloalty component of eddy-flow
solution normal to veloolty of through-flow solution and lying in meridional
plane. | . .
conponent

Shroud

Impeller axis

L8S2
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t~
s3]
n
[A%]
(d} Meridicnal plane D. Values of (Q); are same co plane D' but
of oppoalte sign.
. Pigure 7. - Concluded. Linea of constant (q_l)n, veloclity component of eddy-flow
sclution normal to velocity of through-flow solution and lyicg in meridional

P .

Shroud

Impeller axis

Impeliler tip
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directed into page.

8
» S0t
RUE o
T o
7
L
Impeller tip: — 4
| -
/ I
10—
[}
(2) Meridional planes B and Bf. :
Pigure 8. - Lines of constant ('1)8' tangential velocity compoment of eddy-flow ]
solution, relative to rotating inpeller. Negative valuas of ('1)0 are

Relative tangential
veloolty component

t¥yle

Shroud
-0,1¢

.08

.06

.04

.02 Bub

Inpeller axis

L85¢
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{b) Meridional planes C and Ct.
tangential velocity component

Figure 8. - Coatinued. Iines of constant (Wy)g,
of eddy-flow solution, relative to rotating impeller. Negative values of (ll'I)a

are directed into page.

Shroud
Relative tangentianl
veloclity coxponent
(W )y
~0.14 I
12 .,
B K
— Q8
i
04

Inpeller axis
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(c) Meridionel planes D amd Df.
Figure 8. - Omtinued. Lines of oonstant (W),

NACA TN 2806

_f_m

'’
l
I
!
T

|
|
| -

Impeller tip H:"',-v-l
% 4
F

L1 15| |

al veloolty

of eddy-flow soluticon, relative to rotating impeller.

are directed inte page.

Shroud

Wegative values of “‘1)0 o

Relative tangential
veloolty component

(W),

=0.167

14

1

-.08

-.08

14518

Impeiler axis
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Impeller :ip-\
(d) Meridional plane E.
. Pigure 8. - Concluded. Lines of (W1)g, a2l velocity cemp
of eddy-flow solution, relative to rotating impeller. KNegative valaes of (wl).
are directed into page.
Relative tangential
velocity component
Shroud (¥1)e 4
~0. 16
1 gt
» Ld—"1
o 18—
» 10~
]
e o0
o O
Pad

Impeller axia
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FMrore ¥. - Path lines of fluid parvicies o surrTsoss of |. .
roLAving impellier channei with Ke¢ro Wb Lhrough Ilow.

NACA TN 2806
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Inreller bipM/

Pigure 10. - Streamlines in meridional plane for flow in statiooary irmpeller
pasaage described in . B8treamline designation indicates percentage
of riow through channel between streamline and hub. Incompressible flows
(Q)y, 0.3429 far upstresx {reference 1).

Shroud
3tream functiom
ratio
1.0 N

.9 *

.8 .

T

5 et 3 .
N,
N,

Impeller axis
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(o) tomposite plot.

Flaure 13, ~ Concluded, Paths of fiuid periicles on sur-
faras of rotatlnk channel. ton‘,i_“'gucuﬁt of through-Ciow
souavion FGDSTROSR) oh eddy-Tlow Wotutien [k = 6.4)) &g,
EA N2 fRAr EpSLCaRM. - e e I

— (R Y

1852
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(c) Compasive plot.

Hgm le. = Ocneluded. Paihs of rluid particies on mir- .
faces of rotating charmel. Ome mdred rrunt. of through- |
Tiow swivtion sureTpowed on eddy-T.ow solucion (K = 1.0} i
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8B

mean surface

loolty component Qn normal to
evolution. Tihree-dimensional eddy-flow solution.

gure 17. - Ve
of
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